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The Reynolds-averaged Naviedtokes equations are solved numerically for super- 
sonic flow over a blunt fin mounted on a flat plate. The fin shock causes the boundary 
layer to separate, which results in a complicated, three-dimensional shock-wave and 
boundary-layer interaction. The computed results are in good agreement with the 
mean static pressure measured on the fin and the flat plate. The main features, such 
as peak pressure on the fin leading edge and a double peak on the plate, are predicted 
well. The role of the horseshoe vortex is discussed. This vortex leads to the 
development of high-speed flow and, hence, low-pressure regions on the fin and the 
plate. Different thicknesses of the incoming boundary layer have been studied. 
Varying the thicknesses by an order of magnitude shows that the size of the horseshoe 
vortex and, therefore, the spatial extent of the interaction are dominated by inviscid 
flow and only weakly dependent on the Reynolds number. Coloured graphics are used 
to show details of the interaction flow field. 

1. Introduction 
In  high-speed space vehicle design, the impingement of a shock wave on a down- 

stream surface is one of the most severe aerodynamic problems encountered. It 
may result in loss of control effectiveness owing to flow separation or in loss of 
structural integrity owing to severe local heating. Many different types of shock- 
impingement interactions have been observed. In some instances, such as the bow 
shock from the shuttle nose impinging on the wing leading edge, the inviscid effects 
are dominant, and the strength and location of the impinging shock are known. More 
frequently, however, viscosity is of prime importance, and the shock impingements 
result from an inviscid-viscous flow interaction. To add complexity to the problem, 
neither the shock strength nor the location of the impingement are known 
beforehand. 

A frequently encountered problem of this type occurs when a high-speed flow passes 
over a blunt fin mounted on a surface (figure 1) .  The fin bow shock causes the 
boundary layer to separate from the surface ahead of the fin, resulting in a 
separated-flow region composed of horseshoe vortices near the surface, and a 
lambda-type shock pattern ahead of the fin. The shock wave emanating from the 
separated-flow region (separation shock) impinges on the fin bow shock, and causes 
intense heating and high pressure locally around the fin leading edge (discussed later). 

Owing to the complexity of the flow phenomena, almost all previous studies have 
been experimental (e.g. Price & Stalling 1967; Kaufman, Korkegi & Morton 1972; 
Sedney & Kitchens 1975; Dolling & Bogdonoff 1982; and Ozcan 1982). In  general, 
because of considerations of time and economy, measurements are only carried out 
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FIGURE 1.  Blunt fin on a flat plate. 

on the body surface and in the plane of symmetry. With the advent of large and fast 
vectorized computers, solving numerically a general three-dimensional flow field is 
now feasible. The objectives of computational fluid dynamics are now not only to 
calculate the flow field, but also to gain an understanding of the physics of the flow. 
The purposes of the present article are to employ a numerical technique previously 
developed by Hung & Kordulla (1984) to simulate a high-speed flow passing over a 
blunt fin mounted on a flat plate and, with all the data in hand, to study the detailed 
features of the interaction of the blunt-fin-induced shock wave and turbulent 
boundary layer. 

Experiments conducted by Dolling, Cosad & Bogdonoff (1979) and Dolling & 
Bogdonoff (1982) at a free-stream Mach number of 2.95 and a unit Reynolds number 
of 6.3 x lo7 m-l will be used for comparison. Two lengthscales are associated with this 
interaction flow field: one is the diameter of the blunt fin D and the other is the 
incoming boundary-layer thickness 6. In the present study, the thickness of the 
boundary layer will be varied from 6 / D  = 1.0 to 0.1 to demonstrate the weak 
dependence on Reynolds number of the spatial extent of the interaction, as observed 
in the experiments. Computed results will first be compared with measurements of 
surface pressure on the flat plate and on the fin. Some of the results for the 6 / D  = 1.0 
case have previously been presented in the article by Hung & Kordulla (1984) to verify 
the program development. The physical aspects of the flow field will be stressed in 
the present study. The existence and the role of a horseshoe vortex and two reversed 
supersonic zones is also discussed. Coloured graphics of the pressure and Mach number 
in various planes will show the detailed structure of the mean flow field. 

Some caution is required here. Most experiments have observed certain degrees of 
unsteadiness in this type of flow field, as well as other types of shock wave and 
turbulent boundary-layer interactions. Dolling & Bogdonoff (1981) investigated the 
unsteady behaviour of the flow field for the case of 6 / D  = 0.26 and pointed out that 
the flow is inherently unsteady. However, as shown by that and other unsteady-flow 
studies (for instance Hayakawa, Smits & Bogdonoff 1984), this unsteadiness is an 
irregular, broad-band and completely stochastic fluctuation which is associated with 
the dynamic nature of the turbulent boundary layer. Sedney & Kitchens (1975) 
pointed out that the dominant frequency of the oscillation is probably of the order 
of 1000 Hz. This oscillation can only be resolved by a direct or large-eddy turbulence 
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simulation. Thus, for the present study, the Reynolds-averaged Naviel-Stokes 
equations are used and the random turbulence fluctuations are suppressed. The 
comparison of computational results with the experimental measurements is made 
only in terms of ‘mean’ values, which is within the scope of the Reynolds-averaged 
approach. Further experimental studies of shock wave and turbulent boundary-layer 
interaction will help future developments of turbulence modelling, but the age of 
direct, time-dependent turbulence simulation of this type of problem is still some way 
away. 

2. Numerical procedure 
2.1. Equations in non-dimensional form 

In the absence of body forces and source terms, the governing Naviel-Stokes 
equations for conservation of mass, momentum and energy in a stationary, finite 
volume Y, enclosed by the control surface 9, can be written in non-dimensional form 
as 

a d Y +  (gu+d) -ndY=O,  atJ/ s, 
where g = (P, PU, P”, PW, mT, 

4 = (bp) b,, be IT, 
E = e,+a (u2+v2+w2), 

bp = 0, 

b, = PI+ M ,  Re;l T, 

T = - A  divd-p[(gradu)+(grad~)~],  

be = - yM, (Re, Pr)-’y grad ei +pu + M ,  ReE1 T u. 

Here conventional definitions of the flow quantities are used. The Cartesian velocity 
components (u, v, w) are normalized by the free-stream speed of sound a,, p is 
normalized by pco, the specific internal energy e, and total energy E are normalized 
by a:, and p is normalized by p,a&. The two viscosity coefficients h and p are 
normalized by the molecular viscosity pa. The constant y is the ratio of specific heats, 
Re, is the Reynolds number based on free-stream velocity and diameter D,  and Pr 
is the Prandtl number. For a perfect gas the normalized state relations are 

a2 = T, 1 T 
p = -pT, ei = - 

Y Y(Y-  1)’ 

where the temperature T is normalized with respect to T,. The above system of 
equations is valid for turbulent as well as laminar flow by replacing the molecular- 
transport coefficients with their turbulent counterparts. (It becomes the so-called 
Reynolds mass-averaged Navier-Stokes equations.) Sutherland’s formula is used to 
evaluate the molecular viscosity. A turbulence model closes the system of governing 
equations. 

For high-Reynolds-number flows, the viscous effects are confined to a thin layer 
near the wall boundary and are dominated by the viscous terms associated with the 
strain rates normal to the wall. The viscous terms associated with the strain rates 
along the body are comparatively small and negligible. This concept was first 
discussed by Prandtl in the development of boundary-layer theory and has been 
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applied and extended to various problems. The development of the thin-layer 
approximation by Baldwin 6 Lomax (1978) is based on this concept, with the 
retention of the unsteady and all the inviscid terms of the Navier-Stokes equations. 
The extension of the thin-layer approximation to two directions was demonstrated 
in a previous study of supersonic flow over an axial corner (Hung k Kuraski 1980). 
Here, the concept is extended to the case of thin layers in all three directions for a 
general coordinate system. All the viscous terms associated with cross-derivatives are 
neglected, but with retention of terms with normal second derivatives. This 
approximation retains not only the most dominant terms in the governing equation 
but also the so-called ‘second-order ’ boundary-layer terms as derived by Rubin 
(1966). The neglected cross-derivatives can be of the same order of magnitude as the 
retained normal derivatives very near the junction of two walls, but the flow contains 
comparatively very low momentum. Therefore, neglect of cross-derivatives will not 
significantly affect the general features of the flow field. 

A numerical procedure previously developed by Hung k Kordulla (1984) is 
adopted. The program is coded for general three-dimensional body-fitted coordinates. 
A cell-concept finite-volume formulation is implemented. The computational domain 
is divided into a number of non-overlapping finite cells prescribed by surrounding 
grid points. The cell surface and volume are accurately evaluated, and the resulting 
solution satisfies the integral conservation laws of mass, momentum and energy. The 
basic numerical scheme is MacCormack’s (1982) explicit-implicit predictor-corrector 
algorithm with a Strang-type (1968) time-splitting. The time-splitting makes the 
method locally one-dimensional for three-dimensional problems and also makes the 
dependent variables on the right-hand side consistent with the characteristic 
variables in a similarity transformation. The thin-layer approximation drastically 
simplifies the evaluation of viscous diffusion and dissipation terms, and allows easy 
vectorization of the algorithm. Details of the numerical technique are discussed by 
Hung & Kordulla (1984). 

2.2. Mesh system 
For a simple geometry, such as a fin on a flat plate, the mesh can be algebraically 
generated for easy control of mesh spacing and distribution. For the present study 
at zero angle of attack the flow is assumed to be symmetrical with respect to the 
centreplane of the fin; hence only half of the flow is calculated. Figure 2 shows a mesh 
system of 40 x 32 x 32 points, in which the I-direction corresponds to the coordinate 
along the fin, the J-direction is outward from the fin, and the K-direction is normal 
to the flat plate. The origin is set at  the nose-tip of the fin on the flat plate. In both the 
J- and K-directions (the outward and the z-direction), the mesh is geometrically 
stretched. A fine mesh near the wall is required for an adequate resolution of the 
viscous effects. 

In  an (2, y)-plane, the mesh is basically oriented along polar coordinates in the nose 
region and along Cartesian coordinates in the straight fin region. Along the fin body 
in the I-direction, equal spacing is used in the nose region and geometrically stretched 
spacing from the shoulder to the downstream boundary. At  the outer boundary a 
geometric stretching formula is used to blend the mesh system from a polar coordinate 
mesh to a normal Cartesian mesh. The blending procedure avoids abrupt changes in 
cell size, but results in a slightly non-orthogonal mesh in that region, as shown in 
figure 2. 

2.3. Boundary conditions 

The fin is assumed semi-infinite in height and length, so that zero-gradient boundary 
conditions are imposed at the outer boundaries in the corresponding directions. The 
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fin is at zero yaw, and a symmetry condition is imposed at the plane of symmetry. 
The wall is assumed impermeable, and no-slip boundary conditions are applied. The 
wall is also assumed to be adiabatic, and the pressure gradient normal to the wall 
is set to zero. 

The outer boundary of J = Jmax is set far enough away to avoid any influence on 
the interaction region. Theoretically one can prescribe a boundary-layer profile on 
the flat plate at each docation along the outer boundary. These profiles can be easily 
generated from their corresponding points of a flow over an isolated flat plate rn 
sketched in figure 3. In the present calculation, the range of interest is assumed small 
compared to the length of flat plate generating the incoming boundary. Hence, the 
variation of the boundary-layer profile at the outer boundary is assumed small and 
is neglected. Therefore one predetermined boundary-layer profile is prescribed for all 
s-locations along the outer boundary. 

2.4. Turbulence rrwdel 
Turbulence modelling for the three-dimensional configuration of figure 1 is complicated 
and not well developed. As z +a, turbulence is dominated by the fin surface ; on the 
other hand, as z+O,  the turbulence is under the influence of the flat plate. Near the 
junction, the turbulence is completely three-dimensional. 

Turbulent transport described here used the eddy-viscosity concept, and empirical 
models are used to determine the transport coefficients. To simplify the analysis in 
the present study, an algebraic eddy-viscosity model, proposed by Baldwin BE Lomax 
(1978), with a ‘modified distance’ is used. This model is particularly well suited for 
complex flows that contain regions in which the lengthscales are not clearly defined. 
No attempt is made at present to account for the history and the amplification of 
turbulence intensity after a sudden strong compression through a shock wave. The 
study of more realistic or complex turbulence models is left for future study. 

In  each ( J ,  K)-plane, the computational domain is similar to a corner formed by 
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FIGURE 3. Boundary-layer profiles on the flat plate at s-locations. 

two perpendicular walls, as sketched in figure 4. For simplicity of discussion (y, z )  
are used as coordinates. The two-layer turbulence model developed by Baldwin & 
Lomax (1978) is applied in the following way : In  the inner region, the Prandtl mixing- 
length expression is 

where .9 is the van Driest damping factor, K is von Kdxmdn’s constant, and w is the 
absolute value of vorticity w = I V x V(. This formula is similar to the model of Cebeci 
& Smith (1974), except for the use of the absolute value of vorticity, which is invariant 
with respect to the coordinate system and thus avoids complication in the corner 
region. The definition of distance 7 is critical for evaluation of the lengthscale in the 
eddy-viscosity model. For the present analysis, a modified distance developed in an 
earlier investigation of a three-dimensional corner (Hung & MacCormack 1979) is 
adopted : 

€inner = A K ~ T ) ~ ~ ,  

2YZ 
y + z + (y2 + 22) t ’  

T =  

This formula is designed to account for the size of turbulence eddies or the turbulence 
mixing length near the corner under the influence of both walls. Note that, as z/y+ao, 
~ + y ,  and, as y/z+co, q + z .  

In the outer region, 
‘outer = ccp(o.0168pFwake B) 3 

Tmax F’aw 

{cwk vmax UElFmax. 
where 

The quantity Fmax is the maximum value of F(7) = 709, and rmax is the value of 
7 at which it occurs. The Klebanoff intermittency factor /3 is given by 

Fwake = the smaller of 

,8=[1+5.5(-)] CKleb7 -’ 
Tmax 
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FIGURE 4. Division of four regions in ( J ,  K)-plane. 

The constants appearing in the preceding relations are 

C,,, = 1.6, C,, = 0.25, CKleb = 0.3. 

The plane is divided into four regions I, 11,111, and I V  as shown in figure 4. In regions 
I and 11, 9 is evaluated at wall y = 0 and, in I11 and IV, 9 is evaluated at the wall 
z = 0. The search for F,, and its corresponding rmax proceeds outward from the 
wall, either from y = 0 for region IV,  or from z = 0 for region I. The values of F,,, 
in regions I1 and I11 are constants, equal to the value of F,,, at M and N, respectively. 

3. Results and discussion 
The flow to be simulated has free-stream conditions of M ,  = 2.95, and unit 

Reynolds number of 6.3 x lo7 m-l. A blunt fin of diameter D = 1.27 cm is at zero yaw, 
as shown in figure 1.  There are two lengthscales involved in the flow field. One is the 
diameter of the blunt fin and the other is the incoming boundary-layer thickness. The 
diameter is a geometric parameter that determines, for instance, the inviscid 
bow-shock shape and location. The incoming boundary-layer thickness is a viscous 
flow-field parameter and depends on the Reynolds number. Very often in the 
interaction of a two-dimensional shock wave and boundary layer (see e.g. Horstman 
et al. 1977), the boundary-layer thickness is one of the most important parameters 
affecting the size of the separation bubble and the range of upstream influence. In 
a three-dimensional flow, there is an additional direction for the fluid to move and 
escape from a severe adverse environment. Consequently, not only the boundary-layer 
thickness, but other factors arising from the extra dimension will affect the extent 
of the interaction. The question is, what is the role each one plays, and which one 
is the dominant parameter 1 

In  the present paper, the surface properties and features of the flow field in the 
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plane of symmetry will be shown first and compared with experimental measurements 
for the case of 6 / D  = 1.0. Then the effects of boundary-layer thickness will be 
determined. Finally the details of the three-dimensional flow field will be shown by 
a combination of various colour figures. 

One should be aware that in the experiment the flow is inherently unsteady and 
highly oscillatory because of the amplification of turbulence fluctuations by the shock 
system. In the present computation, the Reynolds-averaged Navier-Stokes equations 
are solved and a symmetry condition is enforced. Therefore the flow is steady and 
the comparison of computational results with experimental measurements is made 
only in terms of average values. One expects the surface mean static pressure to be 
least sensitive to  the turbulence fluctuations. The discussion of flow-field features, 
such as particle paths, should be read with caution. 

3.1. Surface properties and results at the plane of symmetry 

Figure 5 ( a )  and (b )  shows the comparison of surface pressure along the fin leading 
edge (q4 = O O ) ,  and along various $ = constant and x = constant lines on the fin. ($ is 
the angle on the fin measured from the nose.) The pressure is referenced to the total 
pressure behind the normal shock, pt2,  a t  $ = 0" and $ = 45', and otherwise is refer- 
enced to  the free-stream static pressure p,. Here p,, = 1 1 . 8 6 ~ ~  = 0 . 3 4 2 8 ~ ~ ~ .  The 
agreement is very good except that the level of peak pressure is slightly underpre- 
dicted. The location of peak pressure is closely predicted. In these two figures, one 
observes : 

( 1 )  The existence of a peak pressure in the nose region. 
(2) The appearance of extreme low pressure around z / D  = 0.2. 
(3) An increase of pressure in the direction toward the plate from the position of 

(4) The extreme low pressure on the fin dies out downstream of the shoulder. 
Such features are commonly explained by a simple sketch of the 'inviscid' flow 

structure in the plane of symmetry (figure 6). The separation shock intersects with 
the bow shock, resulting in a supersonic jet (which separates two subsonic regions) 
impinging on the fin surface, and leads to a peak pressure on the fin. This shock-shock 
intersection is commonly called an Edney type IV interference between the fin bow 
shock and the separation shock. The pressure decreases below the value of the total 
pressure behind the normal shock p,,. This feature is attributed to the gradual 
decrease of stagnation pressure (from free-stream stagnation pressure p , ,  to  p ,  at  
the wall) in the incoming boundary-layer profile. As the flow expands around the 
shoulder of the blunt fin, the pressure may even be lower than the free-stream static 
pressure. Indeed, the minimum of low pressure can be less than p / p ,  1: 0.4 near 
4 = 90". However, this simplified inviscid-flow argument neglects the important role 
of the horseshoe vortex, and cannot explain the last two features. Actually, the 
existence of a pressure peak in the nose region does not have to  be caused by the 
impingement of a supersonic jet. Further details will be discussed later in this paper 
after more information is presented. 

Comparisons of pressure on the flat plate along the line of symmetry and 
y = constant are shown in figure 7 (a)-(c). Again, the agreement is very good. All the 
main features, such as upstream influence, pressure rise due to  the separation shock 
(figure 7 ( a ) )  and double pressure peak (figure 7 b  and c ) ,  are well simulated. (In the 
experiment, there exists a third small peak for y / D  = 1 .O and 2.0 which the numerical 
results fail to  show for lack of resolution.) Important questions here are why there 
is a low-pressure region between the pressure rise due to the separation shock and 

the minimum. 
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FIGURE 7(a) .  For caption see facing page. 

the final compression along the line of symmetry, and why a double peak appears 
on the flat plate. 

The particle paths in the plane of symmetry (figure 8) clearly show that the flow 
separates ahead of the blunt fin and spirals to form a primary horseshoe vortex on 
the plate around the fin. A small secondary vortex near the fin and plate juncture 
can also be seen. The primary vortex elongates to a length of about 1.5 diameters 
of the blunt fin with its core only about 0.2 diameters above the flat plate. The 
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FIGURE 9. Limiting streamlines on the flat plate. 

existence of a horseshoe vortex has been clearly shown by Norman (1972) for a 
low-speed laminar boundary layer over an obstacle. However, although, in supersonic 
turbulent flow, the existence of a horseshoe vortex has been conjectured from the 
trace of oil flows i t  has never been experimentally demonstrated. Figure 9 shows 
simulated oil-flow lines on the flat plate. The experimental separation and reattach- 
ment lines are also marked in the figure. The reattachment line is difficult to  define 
both in the computations and experiment. Therefore the quality of agreement is 
difficult to judge. The oil-accumulation line in the experiment is treated as a line of 
separation. Either it is slightly underpredicted in the computation, or the oil- 
accumulation line in a highly oscillatory flow does not coincide with the ‘steady’ 
separation line. 

Figure 10 ( a )  and ( b )  shows the contour plots of pressure ( p l y p ,  ) and Mach number 
in the plane of symmetry. The superimposed particle paths help one to explain the 
questions raised in figures 5 and 7 .  Note that, for the case calculated, the separation 
shock is very weak and smeared ; there is no sharp ‘triple point ’ of the intersection 
of the bow shock with the separation shock. We have observed no strong Mach-number 
variation behind the bow shock around the peak-pressure region. We have definitely 
not observed the so-called supersonic jet behind the bow shock, which separates two 
subsonic regions and impinges on the fin. The location of peak pressure on the fin 
leading edge coincides with the stagnation streamline. At this Mach number and 
Reynolds number, the peak pressure observed in figure 5(a )  might instead be due 
purely to  multi-compression of the smeared separation shock. Unfortunately, the 
present numerical scheme with the mesh resolution employed is not capable of 
adequately resolving the structure of a shock-shock intersection ; hence this question 
warrants further investigation. 
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The horseshoe vortex brings an abundance of fresh high-momentum fluid into the 
separation region. (The differences between a three-dimensional spiral-vortex 
separated flow and a two-dimensional concentric separation pattern were pointed out 
by Hung & Kordulla (1984).) As this high-momentum fluid accelerates, it results in 
two reversed-flow supersonic zones; one on the fin, with Mach number as high as 1.2, 
and another on the plate, with Mach number up to 1.4. The decrease of pressure from 
the peak to the minimum (figure 5 a )  now is clearly not only a result of the low 
stagnation pressure in the incoming boundary layer, but also of extreme expansion 
caused by the horseshoe vortex and leading to a reversed-flow supersonic zone on the 
fin. Indeed, the streamline of low-momentum flow never directly stagnates on the 
fin; it is spiralled into the horseshoe vortex (see figure 8). The increase of pressure 
towards the plate from the minimum is due to recompression from supersonic flow 
back to subsonic flow. It is this adverse pressure gradient that leads to the generation 
of a secondary vortex on the fin. As the horseshoe vortex moves laterally away from 
the fin, the effect of the speed-up from the vortex decreases drastically. That is why 
the existence of a minimum in pressure disappears as x / D  exceeds 1.5 (figure 5 b ) .  
Details of the pressure expansion around the fin, and the existence of separation on 
the fin are shown in the pressure contour plot and the limiting streamlines on the 
unwrapped fin surface (figures 1 1 a and b) . 

Comparing figures 10 (a )  and (b), we see that the two low-pressure regions on the fin 
and on the flat plate correspond to the two reversed supersonic zones, respectively. 
This implies that the low pressure immediately aft of the separation shock also is 
connected to the existence of the reversed high-speed flow region as discussed above. 
Once we understand the role ofthe horseshoe vortex in the appearance of alow-pressure 
region, the appearance of a double peak in pressure on the plate away from the 
symmetry plane can be explained. Off the line of symmetry the second peak of surface 
pressure is a result of the expansion as the flow passes over the blunt fin. (An 
appearance of peak pressure often is caused by a compression followed by an 
expansion.) The low pressure between two peaks of pressure is caused also by the high 
velocity near the plate under the core of the vortex. This high velocity and low 
pressure under the core of a vortex is a phenomenon typical of an image or so-called 
ground effect of the vortex. It also has often been observed, but seldom explained, 
in separated crossflows (for instance, figures 6, 10, and 21 of Degani & Schiff 1983). 
Recently a similar feature of low pressure behind the separation pressure rise has also 
been observed experimentally in flow over a skewed compression ramp (see figure 4b 
in Teng & Settles 1982). 

The existence of two reversed-flow supersonic zones was first observed by Voltenko, 
Zubkov & Panov (1967). However, they argued that there were two corresponding 
shocks, one on the fin and one on the plate, to recompress the flow back to subsonic. 
Based on figure lO(b) ,  one might say that there is a shock on the fin due to the 
appearance of a large variation of Mach number in a short distance; but there is no 
second shock on the plate (there is enough resolution in that region). The pressure 
rise to the level of the first peak is due to gradual recompression as shown in the Mach 
contour plot. The existence of a reversed supersonic region has also been observed 
in the crossflow about a cone at  large angle of attack (e.g. Nebbleling & Bannink 1978). 

3.2. Effect of varying boundary-layer thickness 
In this section the effect of varying boundary-layer thickness will be discussed. The 
unit Reynolds number is held fixed, while the thickness of the incoming boundary 
layer is reduced from SID = 1.0 to 0.26 and then to 0.10. A boundary-layer profile 
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FIGURE 12. Pressure on fin leading edge for different boundary-layer 
thicknesses: 6 / D  = 0.26 and 0.10. 

and a new mesh with smaller computational domain are generated for the S/D = 0.26 
case. For the case of S/D = 0.10, the same mesh is used and the boundary-layer profile 
is assumed similar and is converted from that of the S/D = 0.26 case, allowing for 
the smaller boundary-layer thickness. The first mesh point ahead of the interaction 
is set a t  about y+ = 8 for S/D = 0.26 and about 12 for S/D = 0.10. The use of a 
large value of y + for the thin boundary-layer case is to  prevent too much stretching 
from the fine to  the coarse mesh and to provide 'adequate' resolution of the 
separation line on the plate and of the peak pressure area on the fin. 

Figure 12 shows the comparison of computed and measured pressures on the fin 
leading edge for S/D = 0.26 and 0.10. The computed results for S/D = 1.0 are also 
shown in the figure for comparison. Again the agreement is good. Surface pressures 
a t  q5 = 45" and 90" (not shown here) are also in similar agreement as shown before. 
The peak pressure is again under-predicted because of insufficient resolution. (The 
dot on the line of computed results indicates the mesh resolution.) The main difference 
between S/D = 1.0 and 0.26 cases is the change in the location of the peak pressure 
from about z /D = 1.25 to 0.92. The value of peak pressure changes very little, from 
p / p t ,  = 1.22 to 1.34. Decreasing S/D further to 0.10 produces only a slight change 
in the location and level of the peak pressure. An interesting finding is that the 
location and level of minimum pressure are almost the same for all three cases. 

Figure 13 (a-c) shows comparisons of pressure on the flat plate a t  y / D  = 0, 1 .O, 
and 2.0 for S/D = 0.26. The computed results for S/D = 1.0 are also plotted in 
figures 13(b) and (c) for comparison. The agreement with experiment is again very 
good. Along the line of symmetry ( y / D  = 0) ,  the computation indicates a decrease 
of pressure near the corner, as shown in the inset fine-scale plot. Note that, for a 
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FIGURE 13. Pressure on flat plate for 8 / D  = 0.26 case: (a) along 
line of symmetry y = 0, ( b )  y = 1.0; (c) y = 2.0. 

thinner incoming boundary layer, the peak of pressure is higher (figures 13 (b) and ( c ) .  
The most striking finding is that, while the level of peak pressure is different, the 
extent of the interaction and the locations of maximum and minimum pressure are 
very close for the two widely different incoming boundary layers. This feature is 
confirmed by the experimental observations of Dolling 6 Bogdonoff (1982). 

Figure 14(u-c) shows pressure contours, Mach contours, and particle paths for 
6 / D  = 0.26; figure 15 shows Mach contours for S/D=O.lO. All these figures 
represent computed results on the plane of symmetry. Comparison of figure 14 (b)  with 
10 (b) shows that, as the incoming boundary layer is made thinner, the lambda shock 
moves outside the viscous layer and becomes well defined. The location of peak 
pressure is changed, corresponding to the new location of the intersection of the 
separation shock with the bow shock. Apart from that, the differences are very minor. 
The size and location of the horseshoe vortex is about the same (see figures 8 and 
14c). Even with better definition of separation shock for the thin boundary-layer case, 
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we still observe no existence of the so-called supersonic jet. As the boundary-layer 
thickness decreases further, the Mach number contours show almost no change 
(compare figures 14b and 15). One can conclude that the size and location of the 
horseshoe vortex are dominated by the inviscid bow shock. Consequently, the location 
of low pressure on the fin and the extent of the interaction on the plate are all weakly 
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FIQURE 16. Sketch of surface pressure for two-dimensional flow m. three-dimensional blunt fin. 

dependent on the thickness of the incoming boundary layer, as observed in 
figures 13 and 14. The differences in magnitude of pressure on the surface result 
from the different boundary layers responding to essentially the same size of horseshoe 
vortex. 

To conclude the last two sections, we would like to emphasize a significant 
difference between the behaviour of surface pressure for two-dimensional flow and 
three-dimensional flow (figure 16). For a two-dimensional flow (for example, a 
forward-facing step or a compression ramp) the surface pressure typically reaches a 
plateau behind the separation pressure rise before the final compression. The range 
of upstream influence is dependent on the Mach number and Reynolds number, and 
the level of the plateau pressure is based on the free-interaction theory discussed by 
Chapman, Kuehn & Larson (1958). If there were a low-pressure region behind the 
separation pressure rise in two-dimensional flow, one would expect a secondary 
separation in that region in response to the favourable pressure gradient. I n  contrast 
to the two-dimensional case, a three-dimensional flow often exhibits low pressure 
behind the separation-pressure rise, due to a reversed high-speed flow in the spiral 
vortex. Near the juncture, there may exist a second peak (as observed in figure 13a) 
because of the existence of a secondary vortex. Away from the plane of symmetry, 
there is no pressure plateau (see figures 76,  c, and 136, c). Along or near the line of 
symmetry, there may exist a short region of pressure plateau (see figures 7 a  and 13a) 
but this is not conclusive and needs further investigation. The location of separation 
for a blunt fin is inviscid dominated and is controlled by the horseshoe vortex. As 
pointed out by Kaufman et al. (1972) (see their figure 20), for a quite wide range of 
Mach number and Reynolds number, the separation is at about 2.0 diameters ahead 
of a blunt fin, as long as the incoming boundary layer is turbulent. 

3.3. Details of j o w j e l d  

In a three-dimensional flow-field simulation, a tremendous amount of data is 
generated. Data processing and display have become crucial in our attempts to gain 
physical insights from these large data bases. I n  the foregoing discussion, we 
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concentrated on surface quantities and the flow field in the plane of symmetry to gain 
some understanding of the three-dimensional features, but many questions remain 
to be answered. I n  this section coloured graphics are used to show the additional 
properties of the flow, mainly for the case of S/D = 1.0. 

Figures 17 and 18 (plates 1 and 2) show pressure and Mach-number distributions 
in a sequence of ( J ,  K)-planes. The magnitudes of pressure and Mach number are 
indicated in the corresponding colour chart. There are also several contour lines to 
help show the variation in the magnitude. The pressure and Mach number shown in 
figures 17(a) and 18(a) are equivalent to those in figure 10(a) and ( b ) ,  except that 
now the main features such as intensive pressure near the fin leading edge (figure 17a) 
and the two reversed-flow supersonic zones (figure 18a) can be easily identified. 

Away from the leading-edge symmetry plane and around the shoulder of the fin, 
the bow shock moves outward and the flow expands. The gradual decrease in pressure 
and the relative locations of bow shock, separation shock and low-pressure region are 
clearly shown in figure 17. The response of Mach number to  the pressure variation 
of figure 17 is shown in figure 18. An interesting feature is that, while the Mach number 
behind the bow shock increases substantially as the flow expands, the Mach number 
near the plate does not change very much in magnitude and in its variation with 
height. This indicates that the horseshoe vortex maintains about the same height 
above the plate, remains confined in the viscous layer, and does not penetrate into 
the inviscid flow field, as it spirals downstream. 

The details of the double peak in pressure are easily observed in the plots of pressure 
distribution at various z-planes (figure 19, plate 3). Between z / D  = 0.276 and 0.650, 
indeed, the pressure exhibits a triple peak due to overexpansion around the shoulder. 
At around z/D = 0.950 the first peak in pressure begins to merge into the second peak. 
As z /D  becomes large, the viscous effects from the flat plate eventually disappear, 
and the flow resembles a two-dimensional blunt-body solution. 

Figure 20 (plate 4) shows the Mach number at various planes of constant z. Very 
near the plate surface the flow is viscous dominated and subsonic. The low- 
Mach-number region coincides with the trajectory of the foot trace of the spiral 
horseshoe vortex, and the high subsonic pocket ( M  2 0.8) is in the reversed-flow 
region. Moving away from the surface, most of the flow is supersonic, except for two 
pockets of subsonic flow, a large one associated with the vortex and a small one in 
front of the fin. At about z / D  = 0.276, the two subsonic pockets merge into one and 
detach from the blunt nose. As z / D  becomes large, the subsonic pocket attaches to  
the blunt nose again. At z /D = 0.275 a high-Mach-number region begins to develop 
on the side of the fin beyond the shoulder. I ts  peak value may approach the free-stream 
Mach number because of the expansion around the shoulder. At z / D  = 1.426, the 
high-Mach-number region has lifted off the fin, and moved into the middle of the flow 
field. Below z / D  = 1.426, the interaction of the boundary layer on the plate with the 
blunt-fin-induced shock wave is visible. As z / D  becomes large, the interaction 
eventually vanishes, and the flow becomes a typical two-dimensional solution. Taken 
together figures 17-20 provide a picture of pressure and Mach number in the entire 
flow field for a blunt-fin-induced shock wave and boundary-layer interaction. 

4. Concluding remarks 
A supersonic flow over a blunt fin mounted on a flat plate has been simulated 

numerically. In  spite of the limited mesh resolution available and the complicated 
flow field, the agreement between computed results and measured surface pressure 
is very good. The role of a horseshoe vortex associated with observed features of the 
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flow has been explored at length. Detailed information on pressure and Mach-number 
distributions in the flow has been presented. 

The study, however, is far from being complete. With respect to the numerical 
technique, one should keep in mind that the simulated shock was smeared over 
several mesh points such that it was not possible to resolve a shear layer resulting 
from a shock-shock impingement. A numerical technique with the capability of 
capturing shocks more sharply and better mesh resolution are needed. The issue of 
mesh distribution was not addressed here. Regarding the physical aspects, there are 
several questions that must be resolved. The problem of intense heat transfer in 
hypersonic flows is a crucial one for design engineers. What is the flow structure when 
there are four or more vortices in the field? It remains to be explained why the size 
of the horseshoe vortex is inviscid dominated and to investigate the effects of the 
changes of the turbulence model in this flow-field simulation. Since the flow is 
sensitive to turbulence fluctuation and is inherently unsteady, the most important 
question is how the flow structure, such as horseshoe vortex and separation line, 
behaves in a stochastically oscillatory flow field. Further and thorough investigations 
are required to answer these questions. 
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